리서치

"鞚挫牅 霐旍綌霐╈潉 歆勴枆頃橁矤鞀惦媹雼."

Language Weaver - Research

霝穩歆 鞙勲矂電 鞛愳棸鞏 觳橂Μ 攵勳暭鞐 旮戈碃 鞛 鞎岆牑歆 毽劀旃 氚 臧滊皽 鞐偓毳 臧歆瓿 鞛堨姷雼堧嫟. 雼る┐鞝侅澑 雼り淡鞝 韺鞐愳劀電 雼赴鞝侅溂搿滊姅 瓿柬暀鞚 氚滌爠鞁滍偆電 氇╉憸搿, 鞛リ赴鞝侅溂搿滊姅 瓿犼皾鞚 氤胳澑鞚 旖橅厫旄犽ゼ 雿 鞛 鞚错暣頃橁碃 靸堧鞖 旖橅厫旄犽ゼ 雿 須湪鞝侅溂搿 毵岆摛 靾 鞛堧弰搿 頃橂姅 九色视频 韴 氚 旮办垹鞐 鞚 鞛戩梾鞚 霃勳瀰頃橂牑電 氇╉憸毳 臧歆瓿 斓滌波雼 毽劀旃橂ゼ 靾橅枆頃╇媹雼.听

雼轨偓 韺鞐愳劀電 雼れ潓瓿 臧欖潃 攵勳暭鞐 雽頃 鞐瓣惮 臧滊皽鞚 雿旍毐 鞝侁饭鞝侅溂搿 靾橅枆頃橁碃 鞛堨姷雼堧嫟.听

  • 鞚戈车鞁犼步毵 旮瓣硠氩堨棴听
  • MT 頀堨 於旍爼听
  • 雼り淡鞏 鞖旍暯听
  • 臧滌泊氇 鞚胳嫕(NER)听
  • 臧愳劚 攵勳劃听
  • 韰嶌姢韸 靸濎劚听
  • 韰嶌姢韸 雼垳頇 氚 雼るジ 毵愲 響滍槃听
  • 歆堧 雼惦硛听
  • 欤检牅 氚 鞀ろ儉鞚 攵勳劃听

鞝曣赴鞝侅溂搿 旎嵓霟办姢鞐 彀胳劃頃橃棳 氚滍憸頃橁碃, NAACL, (E)ACL, EMNLP, MT Summit 霌 鞛 鞎岆牑歆 瓿踌棎靹 鞛戩梾氍检潉 於滍寪頃╇媹雼. 鞎勲灅鞐愳劀 氇 臧歆 於滍寪氍检潉 氤 靾 鞛堨姷雼堧嫟.

霝穩歆 鞙勲矂鞐愳劀鞚 靷

霝穩歆 鞙勲矂鞐愳劀 攴茧頃 霑 臧鞛 韥 鞛レ爯鞚 鞝堧寑 歆耄晿歆 鞎婋嫟電 瓴冹瀰雼堧嫟. 鞏胳牅雮 靸堧鞖 雿办澊韯, 頋ル搿滌毚 鞏胳柎, 雼れ枒頃 霃勲⿺鞚 氚 鞎犿攲毽紑鞚挫厴鞚 臧歆 靸堧鞖 瓿犼皾瓿 頃粯 鞚柬晿旮 霑岆鞐 臧欖潃 鞛戩梾鞚 氚橂车頃橁卑雮 歆靻嶌爜鞙茧 霃欖澕頃 欤检牅鞐 雽頃 鞐瓣惮頃橂姁霛 鞁滉皠鞚 氤措偞歆 鞎婌姷雼堧嫟.听

毵る厔 靾橃嫮鞏 臧滌潣 雼柎毳 觳橂Μ頃橁碃 氩堨棴頃橂姅 瓿犼皾鞚 鞁れ牅 氍胳牅毳 頃搓舶頃橂姅 靸堧鞖 旮办垹鞚 鞁滊弰頃橂┐靹 鞝勲 旮办垹鞚 鞐半頃橁碃 頇曥灔頃 旮绊殞臧 鞏胳牅雮 欤检柎歆戨媹雼. 雼れ枒頃 氚瓣步鞚 臧歆瓿 鞛堦赴 霑岆鞐 靹滊鞐愱矊靹 氚办毎旮半弰 頃╇媹雼.听

搿滌姢鞎れ牑霠堨姢, 韥措(歆雮橅彫旃, 雿旊笖毽 氚 鞙犽熃 雮 旮绊儉 歆鞐棎 攴缄皠鞚 霊愱碃 鞛堧姅 瓿柬暀鞛, 鞐旍雼堨柎, 氩堨棴臧搿 甑劚霅 雼轨偓 韺鞚 NLP鞐 臧曤牓頃 旮半皹鞚 霊 鞐彊鞝侅澑 韺鞚 甑劚頃橂┌ 歆韽夓潉 雱擁瀳瓿 鞛堨姷雼堧嫟. 韺鞐愳劀電 雼轨偓 MT 鞐旍鞚 氩堨棴頃 靾 鞛堧姅 鞏胳柎鞚 臧滌垬毵岉伡 雼れ枒頃 鞏胳柎搿 欤茧 雽頇旊ゼ 頃橁长 頃╇媹雼.

鞚检儊 鞐呺 鞕胳棎霃 臧 攵勳暭鞐 雽頃 臧侅瀽鞚 鞐瓣惮 氚 旮绊儉 靹犽弰鞝侅澑 氍胳劀毳 氚滍憸頃橂姅 欤缄皠 霃呾劀 攴鸽9霃 臧歆瓿 鞛堨姷雼堧嫟. 氍挫棁氤措嫟霃 毵れ< 1,000氇呾潣 霃呾瀽臧 鞚诫姅 欤缄皠 敫旊攴, "The Neural MT Weekly"毳 瓴岇嫓頃橁碃 鞛堨姷雼堧嫟.

鞚柬晿瓿 攴茧頃橁碃 鞁鹅溂鞁滊嫟氅, 九色视频鞐 氍胳潣頃橃劯鞖.

於滍寪氍继

靹犿儩頃 於滍寪氍:鈥 鈥

2021:鈥 鈥

Roemmele, M., Sidhpura, D., DeNeefe S., Tsou, L.(2021).鈥疉nswerQuest: A System for Generating Question-Answer Items from Multi-Paragraph Documents. 鞝勳偘鞏胳柎頃 順戫殞鞚 鞙犽熃 毂曧劙 鞝16須 旎嵓霟办姢(EACL, 2021), 雿半 韸鸽灆鈥 鈥

2020:鈥 鈥

Saunders, D., Feely, W., Byrne, B.(2020).鈥疘nference-only sub-character decomposition improves translation of unseen logographic characters, 鞝7須 鞎勳嫓鞎 氩堨棴 鞗岉伂靾嶌棎靹 歆勴枆鈥 鈥

2019:鈥 鈥

Feely, W., Hasler, E., de Gispert, A.(2019).鈥疌ontrolling Japanese Honorifics in English-to-Japanese Neural Machine Translation.鈥牅6須 鞎勳嫓鞎 氩堨棴 鞗岉伂靾嶌棎靹 歆勴枆鈥 鈥

Saunders, D., Stahlberg, F., de Gispert, A., Byrne, B.(2019). Domain Adaptive Inference for Neural Machine Translation. 鞝57須 鞝勳偘鞏胳柎頃欗槕須(ACL) 鞐瓣皠 須岇潣鞐愳劀 歆勴枆鈥 鈥

Roemmele, M.(2019). Identifying Sensible Lexical Relations in Generated Stories. 2019 鞝勳偘鞏胳柎頃欗槕須 鞐瓣皠 旎嵓霟办姢 攵侂 毂曧劙鞐愳劀 歆勴枆霅 雮措煬韹半笇 鞚错暣 鞗岉伂靾: Human Language Technologies(NAACL 2019)鈥 鈥

2018:鈥 鈥

Iglesias, G., Tambellini, W., de Gispert, A., Hasler, E., Byrne, B.(2018). Accelerating NMT Batched Beam Decoding with LMBR Posteriors for Deployment. 2018 鞝勳偘鞏胳柎頃欗槕須 旎嵓霟办姢 攵侂 毂曧劙鞐愳劀 歆勴枆(NAACL-HLT)鈥 鈥

Hasler, E., de Gispert, A., Iglesias, G., Byrne, B(2018). Neural Machine Translation Decoding with Terminology Constraints. 2018 鞝勳偘鞏胳柎頃欗槕須 旎嵓霟办姢 攵侂 毂曧劙鞐愳劀 歆勴枆(NAACL-HLT)鈥 鈥

Saunders, D., Stahlberg, F., de Gispert, A., Byrne, B.(2018). Multi-representation Ensembles and Delayed SGD Updates Improve Syntax-based NMT. 鞝56須 鞝勳偘鞏胳柎頃欗槕須(ACL) 鞐瓣皠 須岇潣鞐愳劀 歆勴枆鈥 鈥

Stahlberg, F., de Gispert, A., Byrne, B.(2018). The University of Cambridge's Machine Translation Systems for WMT18. 旮瓣硠氩堨棴 旎嵓霟办姢(WMT)鞐愳劀 歆勴枆鈥 鈥

2017:鈥 鈥

Hasler, E., de Gispert, A., Stahlberg, F., Waite, A., Byrne, B.(2017). Source sentence simplification for statistical machine translation. Computer Speech & Language 45甓, 221~235韼橃澊歆鈥 鈥

Stahlberg, F., de Gispert, A., Hasler, E., Byrne, B.(2017). Neural Machine Translation by Minimising the Bayes-risk with Respect to Syntactic Translation Lattices. 鞝15須 鞝勳偘鞏胳柎頃欗槕須 旎嵓霟办姢 鞙犽熃 毂曧劙(EACL)鞐愳劀 歆勴枆鈥 鈥

Hasler, E., Stahlberg, F., Tomalin, M. de Gispert, A., Byrne, B.(2017). A Comparison of Neural Models for Word Ordering. 鞛愳棸鞏 靹鸽寑鞐 雽頃 甑牅 旎嵓霟办姢(INLG)鈥 鈥

2015鈥

Gispert, A., Iglesias, G., Byrne, W.,(2015) Fast and Accurate Preordering for SMT using Neural Networks, North American Chapter of the Association for Computational Linguistics: Human Language Technologies鈥 鈥

Dreyer, M., & Graehl, J.(2015) hyp: A Toolkit for Representing, Manipulating, and Optimizing Hypergraphs, North American Chapter of the Association for Computational Linguistics: Human Language Technologies鈥 鈥

Dreyer, M., & Dong, D.,(2015) APRO: All-Pairs Ranking Optimization for MT Tuning, North American Chapter of the Association for Computational Linguistics: Human Language Technologies鈥 鈥

2014鈥 鈥

May, J., Benjira, Y., Echihabi, A.,(2014) An Arabizi-English Social Media Statistical Machine Translation System, Association for Machine Translation in the Americas鈥 鈥

Jehl, L., Gispert, A., Hopkins, M., Byrne, M.,(2014) Source-side preordering for translation using logistic regression and depth-first branch-And-bound search, European Chapter of the Association for Computational Linguistics(239~248韼橃澊歆)鈥 鈥

2013鈥 鈥

Hopkins, M., & May, J.(2013) Models of Translation Competitions. 2013 ACL鞐愳劀 歆勴枆鈥

Munteanu, D. S., & Marcu, D.(2013) Exploiting Comparable Corpora. In Building and Using Comparable Corpora, Springer Publications.鈥 鈥

2012鈥

Soricut, R., Bach, N., & Wang, Z.(2012) WMT12 頀堨 於旍爼 瓿奠湢 鞛戩梾鞐愳劀鞚 SDL 霝穩歆 鞙勲矂 鞁滌姢韰, 2012雲 6鞗 旌愲倶雼 韤橂病 氇姼毽槵鞐愳劀 鞐措Π 鞝7須 韱店硠鞝 旮瓣硠氩堨棴 鞗岉伂靾(WMT 2012)鞐愳劀 歆勴枆鈥 鈥

Dreyer, M. & Marcu, D.(2012) HyTER: Meaning-Equivalent Semantics for Translation Evaluation, 2012 鞝勳偘鞏胳柎頃欗槕須 旎嵓霟办姢 攵侂 毂曧劙鞐愳劀 歆勴枆: Human Language Technologies, Montreal, Canada.鈥 鈥

2011鈥 鈥

Hopkins, M., & May, J.(2011) Tuning as Ranking. 2011 EMNLP鞐愳劀 歆勴枆鈥 鈥

Hopkins, M., Langmead, G., & Vo, T.(2011) Extraction Programs: A Unified Approach to Translation Rule Extraction. 2011 WMT鞐愳劀 歆勴枆鈥 鈥

2010鈥 鈥

Soricut, R., & Echihabi, A.(2010) TrustRank: Inducing Trust in Automatic Translations via Ranking, Association for Computational Linguistics Conference, 鞝勳偘鞏胳柎頃欗槕須 旎嵓霟办姢(612~621韼橃澊歆)鈥 鈥

Hopkins, M., & Langmead, G.(2010) SCFG Decoding Without Binarization. 2010 EMNLP鞐愳劀 歆勴枆鈥 鈥

Wang, W., May, J., Knight, K., & Marcu, D.(2010) Re-Structuring, Re-Labeling, and Re-Aligning for Syntax-based Machine Translation, 鞝勳偘 鞏胳柎頃. (36.2)鈥 鈥

2009鈥 鈥

Hopkins, M., & Langmead, G.(2009) Cube Pruning as Heuristic Search. 2009 EMNLP鞐愳劀 歆勴枆鈥 鈥

Yamada, K., & Muslea, I.(2009). Re-ranking for large-scale statistical machine translation, Learning Machine Translation(151~169韼橃澊歆)鈥 鈥

2007鈥 鈥

Wang, W., Knight,K., & Marcu, D.(2007) Binarizing Syntax Trees to Improve Syntax-Based Machine Translation Accuracy. 頂勲澕頃 EMNLP-07鞐愳劀 歆勴枆(746~754韼橃澊歆)鈥 鈥

2006鈥 鈥

Marcu, D., Wang, W., Echihabi, A., & Knight, K.(2006) SPMT: Statistical Machine Translation with Syntactified Target Language Phrases", Empirical Methods in Natural Language Conference, 鞛愳棸鞏 旎嵓霟办姢鞚 瓴巾棙鞝 氚╇矔搿(44~52韼橃澊歆)鈥 鈥

Huang, B., & Knight, K.(2006). Relabeling Syntax Trees to Improve Syntax-Based Machine Translation Quality. 2006雲 HLT-NAACL鞐愳劀 歆勴枆

The Neural MT Weekly 구독

Loading...